EE2003 Circuit Theory
 Chapter 6
 Capacitors and I nductors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Capacitors and Inductors Chapter 6

6.1 Capacitors
6.2 Series and Parallel Capacitors
6.3 Inductors
6.4 Series and Parallel Inductors

6.1 Capacitors (1)

- A capacitor is a passive element designed to store energy in its electric field.

- A capacitor consists of two conducting plates separated by an insulator (or dielectric).

6.1 Capacitors (2)

- Capacitance C is the ratio of the charge q on one plate of a capacitor to the voltage difference v between the two plates, measured in farads (F).

$$
q=C v \quad \text { and }
$$

$$
C=\frac{\varepsilon A}{d}
$$

- Where $\underline{\varepsilon}$ is the permittivity of the dielectric material between the plates, \underline{A} is the surface area of each plate, \underline{d} is the distance between the plates.
- Unit: $\mathrm{F}, \mathrm{pF}\left(10^{-12}\right), \mathrm{nF}\left(10^{-9}\right)$, and $\mu \mathrm{F}\left(10^{-6}\right)$

6.1 Capacitors (3)

- If ii is flowing into the +ve terminal of C
- Charging $=>i$ is $+v e$
- Discharging $=>\mathrm{i}$ is -ve

- The current-voltage relationship of capacitor according to above convention is

$$
i=C \frac{d v}{d t} \quad \text { and } \quad v=\frac{1}{C} \int_{t_{0}}^{t} i d t+v\left(t_{0}\right)
$$

6.1 Capacitors (4)

- The energy, w, stored in the capacitor is

$$
w=\frac{1}{2} C v^{2}
$$

- A capacitor is
- an open circuit to $\mathrm{dc}(\mathrm{dv} / \mathrm{dt}=0)$.
- its voltage cannot change abruptly.

6.1 Capacitors (5)

Example 1

The current through a $100-\mu \mathrm{F}$ capacitor is

$$
\mathrm{i}(\mathrm{t})=50 \sin (120 \pi \mathrm{t}) \mathrm{mA} .
$$

Calculate the voltage across it at $t=1 \mathrm{~ms}$ and $\mathrm{t}=5 \mathrm{~ms}$.

Take $v(0)=0$.

Answer:

$\mathrm{v}(1 \mathrm{~ms})=93.14 \mathrm{mV}$

$\mathrm{v}(5 \mathrm{~ms})=1.7361 \mathrm{~V}$

6.1 Capacitors (6)

Example 2
An initially uncharged 1-mF capacitor has the current shown below across it.

Calculate the voltage across it at $\mathrm{t}=2 \mathrm{~ms}$ and $\mathrm{t}=5 \mathrm{~ms}$.

6.2 Series and Parallel Capacitors (1)

- The equivalent capacitance of N parallelconnected capacitors is the sum of the individual capacitances.

(a)

$$
C_{e q}=C_{1}+C_{2}+\ldots+C_{N}
$$

(b)

6.2 Series and Parallel Capacitors (2)

- The equivalent capacitance of N series-connected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

(a)

(b)

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots+\frac{1}{C_{N}}
$$

6.2 Series and Parallel Capacitors (3)

Example 3

Find the equivalent capacitance seen at the terminals of the circuit in the circuit shown below:

> Answer:
> $C_{\text {eq }}=40 \mu \mathrm{~F}$

6.2 Series and Parallel Capacitors (4)

Example 4

Find the voltage across each of the capacitors in the circuit shown below:

Answer:
$\mathbf{v}_{1}=30 \mathrm{~V}$
$\mathrm{v}_{2}=30 \mathrm{~V}$
$\mathrm{v}_{3}=10 \mathrm{~V}$
$\mathrm{v}_{4}=20 \mathrm{~V}$

6.3 Inductors (1)

- An inductor is a passive element designed to store energy in its magnetic field.

- An inductor consists of a coil of conducting wire.

6.3 Inductors (2)

- Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys (H).

$$
v=L \frac{d i}{d t} \quad \text { and } \quad L=\frac{N^{2} \mu A}{l}
$$

- The unit of inductors is Henry (H), mH (10-3) and $\mu \mathrm{H}\left(10^{-6}\right)$.

6.3 Inductors (3)

- The current-voltage relationship of an inductor:

$$
i=\frac{1}{L} \int_{t_{0}}^{t} v(t) d t+i\left(t_{0}\right)
$$

- The power stored by an inductor:

$$
w=\frac{1}{2} L i^{2}
$$

- An inductor acts like a short circuit to dc (di/dt $=0$) and its current cannot change abruptly.

6.3 Inductors (4)

Example 5

The terminal voltage of a $2-\mathrm{H}$ inductor is

$$
v=10(1-t) V
$$

Find the current flowing through it at $\mathrm{t}=4 \mathrm{~s}$ and the energy stored in it within $0<t<4$ s.

Answer:

Assume i(0) $=2 \mathrm{~A}$.
$\mathrm{i}(4 \mathrm{~s})=-18 \mathrm{~V}$
$w(4 s)=320 J$

6.3 Inductors (5)

Example 6

Determine $\mathrm{v}_{\mathrm{C}}, \mathrm{i}_{\mathrm{L}}$, and the energy stored in the capacitor and inductor in the circuit of circuit shown below under dc conditions.

$$
\begin{aligned}
& \text { Answer: } \\
& \mathbf{i}_{\mathrm{L}}=3 \mathrm{~A} \\
& \mathbf{v}_{\mathrm{C}}=3 \mathrm{~V} \\
& \mathbf{w}_{\mathrm{L}}=1.125 \mathrm{~J} \\
& \mathbf{w}_{\mathrm{C}}=9 \mathrm{~J}
\end{aligned}
$$

6.4 Series and Parallel Inductors (1)

- The equivalent inductance of series-connected inductors is the sum of the individual inductances.

$$
L_{e q}=L_{1}+L_{2}+\ldots+L_{N}
$$

(b)

6.4 Series and Parallel Inductors (2)

- The equivalent capacitance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

(a)

$$
\frac{1}{L_{e q}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\ldots+\frac{1}{L_{N}}
$$

6.4 Series and Parallel Capacitors (3)

Example 7

Calculate the equivalent inductance for the inductive ladder network in the circuit shown below:

> Answer:
> $L_{e q}=\underline{25 \mathrm{mH}}$

6.4 Series and Parallel Capacitors (4)

- Current and voltage relationship for R, L, C

Circuit element	Units	Voltage	Current	Power
	ohms (Ω)	$v=R i$ (Ohm's law)	$i=\frac{v}{R}$	$p=v i=i^{2} R$
	henries (H)	$v=L \frac{d i}{d t}$	$i=\frac{1}{L} \int v d t+k_{1}$	$p=v i=L i \frac{d i}{d t}$
Capacitance	farads (F)	$v=\frac{1}{C} \int i d t+k_{2}$	$i=C \frac{d v}{d t}$	$p=v i=C v \frac{d v}{d t}$

